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1. Introduction and overview

The study of the IR gauge theory on a stack of regular D3 or fractional branes placed at a

Calabi-Yau singularity is an important issue to test the AdS/CFT correspondence and its

extensions to non conformal cases.

Many concrete examples has recently been found: the superconformal gauge theory

dual to type IIB string theory on AdS5 × Y p,q was built in [1]; see [2 – 4] for AdS5 ×Lp,q,r.

The Sasaki-Einstein metrics for Y p,q and Lp,q,r can be found in [5] and [6, 7] respectively.

At the same time many general features of the correspondence were uncovered, especially

for toric Calabi-Yau singularities: the new techniques of dimers, perfect matchings, zig-

zag paths [8, 9] allow to represent a complicated superconformal quiver gauge theory with

simple diagrams and to compute from them the dual geometry, represented by a toric

diagram, or vice-versa. Therefore it was also possible to perform detailed and general

checks of the correspondence [10 – 19]. Alternative techniques for the study of Calabi-Yau

singularities are based on exceptional collections [20, 21].
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A well known method to break conformal invariance is to add fractional branes, that

can be seen as higher dimensional branes wrapping collapsed cycles at the singularity. On

the gauge theory side the fractional branes modify the number of colors of different gauge

groups consistently with cancellation of anomalies for gauge symmetries. In many known

examples [22 – 24] fractional branes lead to cascades of Seiberg dualities that reduce the

number N of regular branes, so that the IR dynamics is dominated by fractional branes.

A classification of fractional branes into three different classes according to the IR

behavior they produce in the gauge theory was proposed in [25]. We may have i) fractional

deformation branes, that describe a complex deformation of the dual geometry and produce

a supersymmetric (typically confining) vacuum in field theory; ii) N = 2 fractional branes,

leading to N = 2 dynamics in some regions of the moduli space of the gauge theory and iii)

supersymmetry breaking (SB) fractional branes, that seem to be the most common kind

of fractional branes: a supersymmetric vacuum is no more present and typically one finds

a runaway behavior [25 – 29].

In general there is a great number of fractional branes that can be consistently added

to a quiver gauge theory: in the toric case there are d− 3 fractional branes, where d is the

perimeter of the toric diagram of the dual geometry. Therefore one would need a simple

method to compute the anomaly free rank distributions corresponding to the three classes

of fractional branes. In this paper we propose an algorithm to do that in the general toric

case. We will use the language of dimers and zig-zag paths.

First of all we use the known correspondence between fractional branes, that is anomaly

free rank distributions in the gauge theory, and the d−3 baryonic symmetries of the original

superconformal theory (without fractional branes) [30]. Then the main idea of this paper

is to parametrize the global symmetries, and among them the baryonic symmetries, using

weights bi assigned to the external legs vi of the (p,q) web, or equivalently to the zig-zag

paths in the dimer configuration. The global charge of any link in the dimer is computed

by the difference of the two weights of the zig-zag paths to which the link belongs.

It is then easy to understand to which class of fractional branes a rank distribution in

the gauge theory belongs by looking at the weights of the corresponding baryonic symmetry.

We will treat in great detail the case of deformation branes: even though the deformation of

a toric Calabi-Yau cone is no more a toric manifold, having only U(1)2 isometries, there is a

simple rule based only on toric data to understand whether a toric cone admits a complex

structure deformation. In fact deformations of isolated Gorenstein singularities are in

correspondence with Minkowski decompositions of the toric diagram [31] or equivalently

with splittings of the (p,q) web into sub-webs in equilibrium. Our proposal is that fractional

branes corresponding to such deformed geometries have constant weights bi on the different

sub-webs.

N = 2 fractional branes instead are possible when there is a not isolated singularity,

that is when in the (p,q) web there are parallel vectors perpendicular to the same edge

of the toric diagram. In our proposal the baryonic symmetries associated with N = 2

fractional branes have non-zero weights only on these parallel vectors.

We also suggest that different assignments of weights bi correspond to SB fractional

branes.
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We check these proposals on concrete examples. In particular for theories admitting

complex deformations, when a single deformation parameter is turned on, we show that

gauge groups have the only possible ranks: SU(N), SU(N +M), SU(N −M) (previously in

the literature only cases with SU(N) and SU(N +M) gauge groups were known); moreover

in these cases our proposal for deformation branes leads to configurations where no gauge

group can develop an ADS superpotential term, and therefore the existence of a supersym-

metric vacuum is expected. In this analysis we also use the splitting into sub-webs at the

level of zig-zag paths in the dimer, that has already been observed in a recent paper [32].

If we add fractional deformation branes we should not only check that our proposal

leads to a supersymmetric vacuum, but also that the quantum modified moduli space of

the gauge theory, when probed by a regular brane, is equal to the complex deformation

of the toric singularity. For some examples of such computations in the literature see [22,

24]; interesting are the techniques used in [33], since they should work for all toric cases

admitting deformations. One has to write the moduli space of vacua through F-term

relations in the chiral ring of mesonic operators, that are typically modified at quantum

level by ADS terms; on the geometric side the linear relations in C∗ (the dual of the toric

fan C) expressing the toric manifold as a (non complete) intersection in a complex space

can be modified using Altmann’s results [31].

We study the example of the PdP4 theory, admitting two complex deformation param-

eters, in order to verify that our proposal for computing the rank distribution for fractional

deformation branes reproduces correctly also the deformed geometry. In performing these

computations we make use of the Ψ-map, recently introduced in [21], since it allows to find

the precise mapping between mesons in the chiral ring and integer points in C∗, as already

noted in the same paper.

Therefore we translate the Ψ-map theory in [21] in the language of charges and zig-

zag paths. We also note that the idea of giving weights to zig-zag paths allows to prove

explicitly that the Ψ-map of a closed loop is an affine function and that the flavor charges

of mesons are proportional to the homotopy numbers of the corresponding loops in the

torus, as observed for the first time in [12].

This paper is organized as follows. Section 2 contains the definitions of useful tools like

dimers, zig-zag paths and the algorithms for distributing charges in the dimer [15, 34]. In

section 3 we review the classification of fractional branes according to the IR behavior [25]

and the Minkowski decomposition of toric diagrams. In section 4 we explain in great detail

the correspondence between anomaly free rank distributions in the dimer and baryonic

symmetries of the superconformal theory [30]; we also prove that the correspondence is one

to one. In section 5 we introduce the parametrization of global charges through weights

for zig-zag paths and we characterize the three classes of fractional branes through the

weights of the associated baryonic symmetries. We check this proposal for computing rank

distributions in many examples in section 6, where we also treat the general case of theories

with a single deformation parameter turned on. Section 7 contains useful comments to the

Ψ-map theory [21]. In section 8 we provide the explicit computation for PdP4 of the moduli

space of the gauge theory with fractional branes that matches the deformed geometry.
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2. Generalities about the gauge theory

In this section we briefly review some results about the AdS/CFT correspondence in the

superconformal case that have been recently obtained for toric geometries. To be concrete

we will explain the ideas on a specific example well known in the literature: the Suspended

Pinch Point (SPP) that we will use also in the following sections.

We consider N D3-branes living at the tip of a CY cone. The base of the cone, or

horizon, is a five-dimensional compact Sasaki-Einstein manifold H [35, 36]. The IR limit of

the gauge theory living on the branes is N = 1 superconformal and dual in the AdS/CFT

correspondence to the type IIB background AdS5×H, which is the near horizon geometry.

The problem of finding the low energy gauge theory dual to a generic Calabi-Yau

singularity is difficult and still unsolved, but recently the AdS/CFT correspondence has

been built for a wide class of CY singularities: the toric CY cones (roughly speaking a six

dimensional manifold is toric if it has at least U(1)3 isometries).

Many geometrical informations about toric CY cones are encoded in the toric diagram,

a convex polygon in the plane with integer vertices. For the SPP example the fan C is

generated by the integer vectors Vi:
1

(0, 0, 1) (1, 0, 1) (1, 1, 1) (0, 2, 1) (2.1)

and the corresponding toric diagram is drawn in figure 1. The (p,q) web is the set of

vectors perpendicular to the edges of the toric diagram and with the same length as the

corresponding edges (see figure 2).

In the toric case the gauge theory is completely identified by the periodic quiver, a

diagram drawn on T 2 (it is the “lift” of the usual quiver to the torus): nodes represent

SU(N) gauge groups, oriented links represent chiral bifundamental multiplets and faces

represent the superpotential: the trace of the product of chiral fields of a face gives a

superpotential term (with a sign + or - if the arrows of the face in the periodic quiver are

oriented clockwise or anticlockwise respectively).

Equivalently the gauge theory is described by the dimer configuration, or brane tiling,

the dual graph of the periodic quiver, drawn also on a torus T 2. In the dimer the role

of faces and vertices is exchanged: faces are gauge groups and vertices are superpotential

terms. The dimer is a bipartite graph: it has an equal number of white and black vertices

(superpotential terms with sign + or - respectively) and links connect only vertices of

different colors.

The dimer for SPP is drawn in figure 1: it has three faces F = 3, seven edges E = 7,

and four vertices V = 4. The three gauge groups are labelled by the red numbers in

figure 1: faces with the same number are identified. The fundamental cell of the torus T 2

where the dimer lies is (any of) the parallelogram formed by the dashed lines. Since the

dimer is on a torus we have: V − E + F = 0.

1Because of the CY condition it is always possible to choose the third coordinate of the vectors Vi equal

to z = 1. The toric diagram is the intersection of the fan with the plane z = 1. For an introduction to toric

geometry see [37] and the review part of [38].
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Figure 1: Dimer configuration and toric diagram for the Suspended Pinch Point.

By applying Seiberg dualities to a quiver gauge theory we can obtain different quiv-

ers that flow in the IR to the same CFT: to a toric diagram we can associate different

quivers/dimers describing the same physics. It turns out that one can always find phases

where all the gauge groups have the same number of colors; these are called toric phases.

Seiberg dualities keep constant the number of gauge groups F , but may change the number

of fields E, and therefore the number of superpotential terms V = E − F . We will call

minimal toric phases those having the minimal number of fields E.

If the dimer is known the toric diagram can be reconstructed using perfect matchings.

A perfect matching is a subset of links in the dimer such that every white and black vertex

is taken exactly once. Perfect matchings can be mapped to integer points of the toric

diagram through the Kasteleyn matrix which counts their (oriented) intersections with

two loops generating the fundamental group of the torus [8].

The inverse problem of reconstructing the dimer from the toric diagram can be solved

using zig-zag paths [9] (see also [39]). A zig-zag path in the dimer is a path of links that

turn maximally left at a node, maximally right at the next node, then again maximally left

and so on [9]. We draw them in the specific case of SPP theory in figure 2: they are the

five loops in red, blue, magenta, green and yellow and they are drawn so that they intersect

in the middle of a link as in [39]. Note that every link of the dimer belongs to exactly two

different zig-zag paths, oriented in opposite directions. Moreover for dimers representing

consistent theories the zig-zag paths are closed non-intersecting loops. There is a one to

one correspondence between zig-zag paths and legs of the (p, q) web: the homotopy class in
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Figure 2: Zig-zag paths for the Suspended Pinch Point and their correspondence with external

legs of the (p,q) web.

the fundamental group of the torus of every zig-zag path is given by the integer numbers

(p, q) of the corresponding leg in the (p, q) web [9]. The reader can check this in the example

of figure 2. Note that there are two distinct zig-zag paths with homotopy numbers (-1,0)

and not a unique path with homotopy (-2,0) that would intersect itself. This is a general

feature of theories with a toric diagram having integer points on its edges.

The Fast Inverse Algorithm of [9] consists just in drawing the zig-zag paths on a fun-

damental cell with the appropriate homotopy numbers and satisfying suitable consistency

conditions.

2.1 Distribution of charges in the dimer

Non anomalous U(1) symmetries play a very important role in the gauge theory. Here we

review how to count and parametrize them and how to compute the charge of a certain

link in the dimer.

For smooth horizons H we expect d− 1 global non anomalous symmetries, where d is

the number of sides of the toric diagram in the dual theory. We can count these symmetries

from the number of massless vectors in the AdS dual. Since the manifold is toric, the metric

has three U(1) isometries. One of these (generated by the Reeb vector) corresponds to the

R-symmetry while the other two give two global flavor symmetries in the gauge theory.

Other gauge fields in AdS come from the reduction of the RR four form on the non-trivial

three-cycles in the horizon manifold H, and there are d − 3 three-cycles in homology [4]

when H is smooth. On the field theory side, these gauge fields correspond to baryonic

– 6 –
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symmetries. Summarizing, the global non anomalous symmetries are:

U(1)d−1 = U(1)2F × U(1)d−3
B (2.2)

If the horizon H is not smooth (that is the toric diagram has integer points lying on the

edges), equation (2.2) is still true with d equal to the perimeter of the toric diagram in

the sense of toric geometry (d = number of vertices of toric diagram + number of integer

points along edges). For instance in the SPP theory d = 5, so that there are 2 baryonic

symmetries.

These d − 1 global non anomalous charges can be parametrized by d parameters

a1, a2, . . . , ad [15]2, each associated with a vertex of the toric diagram or a point along

an edge (see figure 2 for SPP), satisfying the constraint:

d
∑

i=1

ai = 0 (2.3)

The d − 3 baryonic charges are those satisfying the further constraints [4]:

d
∑

i=1

aiVi = 0 (2.4)

where Vi are the vectors of the fan: Vi = (xi, yi, 1) with (xi, yi) the coordinates of integer

points along the perimeter of the toric diagram.

As an aside recall that R-symmetries are parametrized with the ai having total sum 2

instead of zero.

There are two simple equivalent algorithms to compute the charge of a generic link

in the dimer in function of the parameters ai (the equivalence of the two algorithms was

shown in [34], assuming a conjecture in [9]).

The first efficient way to find the distribution of charges [15], valid for all toric phases,

is based on perfect matchings: the parameters ai are associated with vertices of the toric

diagram, and to every vertex Vi there corresponds a single perfect matching in the dimer,

at least for physical theories [15, 9]. Therefore the charge of a link in the dimer can be com-

puted as the sum of the parameters ai of all the external perfect matchings (corresponding

to vertices) to which the link belongs. For examples of how to use this prescription using

the Kasteleyn matrix, see [15].

The second algorithm is based on zig-zag paths [34]. Consider the two zig-zag paths

to which a link in the dimer belongs. They correspond to two vectors vi = (pi, qi) and

vj = (pj, qj) in the (p, q) web. Then the charge of the link is given by the sum of the

parameters ai+1 + ai+2 . . . + aj between the vectors vi and vj
3. So for instance in figure 2

2The algorithm proposed in [15] to extract the field theory content from the toric diagram is a gen-

eralization of previously known results, see for instance [1, 4, 40], and in particular of the folded quiver

in [2].
3For minimal toric phases it is always possible to choose the sum of the parameters ai in the angle less

than 180o formed by vi and vj . We will generalize this to all toric phases in section 5.
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the links corresponding to the intersection of the red and the magenta zig-zag paths (vectors

v1 and v3 in the (p,q) web) have charge equal to a1 + a2.

This rule explains the formula for the multiplicities of fields with a given charge [15]:

since every link in the dimer corresponds to the intersection of two zig-zag paths, the

number of fields with charge ai+1 + ai+2 . . . + aj is equal4 to the number of intersections

between the zig zag paths corresponding to vi and vj, which is just det(vi, vj).

3. Classes of fractional branes and deformations

in toric geometry

In this section we review the classification [25] of the different types of IR behaviors that

fractional branes can induce in the gauge theory. We also explain Altmann’s rule for

understanding deformations of toric singularities [31] .

Let us start with a large number N of regular D3-branes at the singularity of a toric

CY cone. The IR limit of the gauge theory on the branes is superconformal and the dual

geometry is AdS5 × H. A well known method to break the conformal symmetry is to

add fractional branes. Fractional branes may be thought as higher dimensional branes

wrapping collapsed cycles at the singularity. From the dual string theory point of view

they add new fluxes and change the AdS geometry [22, 23]: the only known example of

smooth metric describing the near horizon geometry produced by fractional branes is the

Klebanov-Strassler solution [22], relative to fractional branes at the tip of the conifold

(H = T 1,1); the internal metric is the CY metric over the deformed conifold up to a warp

factor.

It is easier to study fractional branes from the gauge theory point of view: in this

case they are described by a modification of the number of colors of the different gauge

groups in the quiver gauge theory (with the only requirement that gauge symmetries are

still anomaly free). Maybe it is simpler to see this on the mirror description [39]: the

mirror of the apex of the cone (where the T 3 fibration of the toric manifold is completely

degenerate) is a “pinched” T 3 made up of a collections of F intersecting S3, where F is

the number of gauge groups. D3 regular, and D5, D7 fractional branes at the singularity

are mapped in the mirror to D6-branes wrapping the S3’s: in particular the N D3 branes

are mapped to D6-branes wrapping all the S3’s, contributing to the same factor of N to

the number of colors of gauge groups, whereas fractional branes wrap only some of the S3,

modifying the rank distribution.

In this paper when speaking of fractional branes we will always refer to this changing

of rank distribution in the quiver gauge theory.

The IR behavior of quiver gauge theories with fractional branes have been studied

in many examples, for recent works see [24 – 27, 32]. In [25] a general classification of

fractional branes was accordingly proposed:

• Deformation fractional branes: They are present when the dual toric geometry

admits a complex structure deformation according to Altmann’s rule and they de-

4This is true in minimal toric phases, where the number of real intersections between two zig-zag paths

is equal to the topological number of intersections.
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or +

Figure 3: Deformation of the cone over SPP: decomposition of the toric diagram in Minkowski

summands and splitting of the web into subwebs in equilibrium.

scribe the gauge theory dual to the geometry of the deformed cone. In fact when

there is no obstruction to a deformation, we may expect the existence of a CY metric

over the deformed cone and a supergravity solution similar to the Klebanov-Strassler

solution. The gauge theory has therefore a supersymmetric vacuum (N = 1). In con-

crete examples it turns out that these fractional branes lead to a cascading behavior:

after a certain number of Seiberg dualities the gauge theory comes back to itself

with the number of regular branes decreased by some amount of fractional branes

N → N − M . Typically in the IR one finds a certain number of isolated confining

gauge groups with no more bifundamental matter.

• N = 2 fractional branes: They are present when there are integer points along

the sides of a toric diagram. In this case the horizon H is not smooth and the

singularity at the tip of the cone is not isolated. A side of the toric diagram with

k − 1 internal points gives rise to a complex line of C
2/Zk singularities in the toric

cone passing through the origin, along which the fractional branes can move. The

dual gauge theory has flat directions where the dynamics has an accidental N = 2

supersymmetry. The behavior is really different from the case of deformation branes,

for example the SPP theory with an N = 2 fractional brane, corresponding to figure 8

c), does not seem to have a cascade.

• Supersymmetry breaking (SB) fractional branes: They seem to be the most

generic anomaly free distributions of ranks for gauge groups; they are present also

when the toric cone admits a deformation, in fact the number of complex structure

deformations is less (or at most equal, see the KS theory) than the number of possible

fractional branes (= number of baryonic symmetries in the original superconformal

theory = d − 3). Their main feature is that the gauge theory does not have a

supersymmetric vacuum [25 – 29]: typically in the IR, when the number of colors has

decreased after the cascade, some gauge group have Nf < Nc and develops ADS

superpotential terms leading to a runaway behavior.

In section 5 we will explain how to find the rank distributions corresponding to these

kinds of fractional branes.

– 9 –
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a) b)

Figure 4: Deformation of the cone over dP3. a) One parameter branch. b) Two parameters branch.

Let us now briefly explain Altmann’s rule for deformations of toric singularities. In [31]

it is shown that the complex deformations of isolated Gorenstein (i.e. CY) toric singulari-

ties are completely characterized by the possible decompositions of the toric diagram into a

Minkowski sum of polytopes. We will deal the case of 6d toric cones, described by toric di-

agrams on a 2-plane. Given two 2d convex polygons P1, P2, one can define their Minkowski

sum P1 + P2 as the convex hull of the set {p = p1 + p2| p1 ∈ P1, p2 ∈ P2}, that is the set

of points obtained by summing the points of the two polygons. One can realize that the

edges of P are the union of the sets of edges of the polygons P1 and P2.

We give an example in figure 3, where we show the decomposition of the toric diagram

of SPP into two Minkowski summands (note however that this singularity is not isolated,

and hence one can identify the sides of the triangle in red in two different ways into the

original SPP toric diagram, compare with figures 8 a) and b)).

It is possible to read the same decomposition in terms of subdivision of the (p,q) web

into two (or more) sub-webs at equilibrium, that is the perpendiculars to the sides of the

toric diagram are divided into subsets where the sum of vectors is still zero. We show this

in the same figure 3: the two legs in blue are lifted from the plane of the other vectors and

the link between the two subwebs represents a three-cycle (one deformation parameter).

Therefore the cone over SPP has d − 3 = 2 fractional branes and a branch of complex

deformations with one parameter.

In figure 4 we report the example of the cone over dP3. We see that there are two pos-

sible decompositions into Minkowski summands, that is two branches of complex structure

deformations: the first one, figure 4 a), has one parameter (separation into two sub-webs).

The second branch, figure 4 b) has two parameters (separation into three subwebs). The

number of fractional branes for this theory is d − 3 = 3.

Toric cones whose toric diagram has no Minkowski decompositions do not admit com-

plex structure deformations.

4. Fractional branes and baryonic symmetries

In this section we explain in detail the known correspondence between fractional branes

and baryonic symmetries in the gauge theory [30]. We also prove that the correspondence

– 10 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
0

is one to one.

As explained in the previous section, fractional branes in the quiver gauge theory

modify the number of colors of the gauge groups in such a way that the gauge symmetries

are still anomaly free; in fact the number of flavors for every gauge group is equal to the

number of anti-flavors. These anomaly free configurations can be computed through the

(integer) kernel of the antisymmetric intersection matrix Sij defining the quiver:

∑

j

Sij nj = 0 (4.1)

where in this section the indexes i, j label the gauge groups, that is the nodes of the

periodic quiver. nj is the number of colors of j-th gauge group, and the entry (i, j) of the

intersection matrix Sij is the number of arrows going from node i to j minus the number

of arrows going from j to i. In the following we will assume to start from a toric phase of

the original superconformal gauge theory (before introducing fractional branes), that is a

phase where all the gauge groups have the same number of colors SU(N). Therefore the

constant vector nj = N is always in the kernel of S and it describes regular D3-branes.

There is an equivalent way to compute the allowed distributions of colors ni based on

baryonic symmetries. Consider a rank assignment ni as in (4.1). Define for every oriented

link X of the periodic quiver a charge c(X):

c(Xi→j) = nj − ni (4.2)

if the field X goes from node i to node j. Note that adding regular branes does not change

the charges of chiral fields.

The charges in (4.2) can be seen as linear combinations of the U(1) parts of the original

U(N) gauge groups: the charge associated with the i-th U(1) gauge group is +1 (−1) for

links entering (exiting) in the i-th node and zero for other fields. The sum of these charges

with weight ni for each node i gives the distribution in (4.2).

It is easy to see that (4.2) defines a global non anomalous (baryonic) U(1) charge of the

original superconformal gauge theory, that is the theory with all groups equal to SU(N).

First of all note that from (4.2) it follows that the total charge of every closed loop of links

in the periodic quiver is zero (this is true also if the arrows are not all oriented in the same

direction: we simply define the charge of a loop by subtracting the charges of links oriented

in the opposite direction). In particular faces of the periodic quiver are closed loops and

represent superpotential terms, and hence the superpotential is conserved.

To check that the symmetry is non anomalous under every gauge transformation we

have to compute for every gauge group i the sum of the charges of all links attached to

node i; this is given by:

∑

j

Sij c(Xi→j) =
∑

j

Sij nj −
∑

j

Sij ni = 0 (4.3)

which vanishes because of (4.1) and because the original phase is toric.
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Vice versa every global non anomalous U(1) symmetry (with integer coefficients) such

that every closed loop (oriented or not) has charge zero defines a rank assignment satis-

fying (4.1): start from a generic gauge group i and fix its rank to an arbitrary integer ni.

Then the rank of a node j connected to i by a path L is obtained as:

nj = ni + c(Li→j) (4.4)

Since the charge of closed loops is zero, this rank assignment is unambiguous. Moreover

from the fact that the U(1) symmetry is non anomalous in the original superconformal

theory, that is
∑

j Sij c(Xi→j) = 0, we find that equation (4.1) is satisfied (look at the

first equality in (4.3)). Note that all ranks are defined up to a common constant, that can

be varied by adding regular branes. Equation (4.4) or (4.2) also shows that global U(1)

symmetries that assign zero charge to all closed (oriented or not) loops are automatically

linear combinations of the U(1) parts of the original U(N) gauge groups.

Therefore we have a one to one correspondence between fractional branes (4.1) and

non anomalous global U(1) symmetries that assign zero charge to all closed loops. It is

known in the literature that such symmetries are the baryonic symmetries (of the theory

with all SU(N) gauge groups). As an evidence for this recall that mesonic operators in

the superconformal field theory are dual to supergravity states in string theory, whereas

baryonic operators, having a conformal dimension proportional to N , correspond to states

of a D3-brane wrapped over opportune three cycles of the horizon manifold H. Therefore

only baryons can be charged under a baryonic symmetry, that in the string theory dual

comes from the reduction of RR four form along three cycles in H. Instead mesonic

operators, that are closed oriented loops, have zero charge under baryonic symmetries.

In section 7, we will give a direct proof in the gauge theory for the toric case that

the d − 3 baryonic symmetries are exactly the symmetries under which all loops (also non

oriented) have zero charge. Instead the charges of loops under the two flavor symmetries

are proportional to the homotopy numbers of the loops in the torus T 2 where the periodic

quiver is drawn.

5. Matching deformations with fractional branes

In this section we propose a simple method to find the rank distribution of gauge groups

in the gauge theory dual to the geometry produced by fractional deformation branes, when

the toric singularity admits a complex-structure deformation according to Altmann’s rule.

We will also extend the proposal to N = 2 branes.

First of all we have to find the baryonic symmetry associated with the fractional brane

and then reconstruct the ranks of the gauge groups as explained in the previous section,

equation (4.4).

The main idea is to change the parametrization of global charges: instead of using

the parameters ai associated with integer points on the boundary of the toric diagram and

satisfying equation (2.3), we introduce new parameters bi associated with the vectors vi of

the (p,q) web, that are the perpendiculars to the edges of the toric diagram, see figure 5.
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Figure 5: The parameters bi for global charges.

In this section i = 1, . . . d labels legs of the (p,q) web or integer points along the boundary

of the toric diagram. d is the perimeter of the toric diagram.

For a global charge, the new parameters bi are determined so that they satisfy the

relations:

ai = bi+1 − bi ∀i = 1, . . . d (5.1)

and this is possible because of equation (2.3). Moreover the bi are defined up to an additive

common constant, that leaves unchanged the ai, so that we get a parametrization of the

d−1 global charges. Note that in our conventions the ai and bi are distributed anticlockwise

along the toric diagram or (p,q) web and ai is placed between the legs with parameters bi

and bi+1 as in figure 5. The indexes i are understood to be periodic with period d.

Equation (5.1) implies analogous relations for the charges of “composite” fields: for

example the field with charge a1+a2 in the SPP example can be reparametrized as b3−b1 =

(b3 − b2) + (b2 − b1). And note in figure 2 that this field is just the intersection of the zig-

zag paths corresponding to the vectors v1 and v3 in the (p,q) web, in agreement with the

algorithm for distributing charges proposed in [34]. In fact because of the correspondence

between vectors of the (p,q) web and zig-zag paths, we can think that the weights bi are

assigned to zig-zag paths in the dimer.

Let us restate more precisely the method to find the global charge of a link in the

dimer in functions of the parameters bi. Look at figure 6: we orient the chiral field in the

periodic quiver so that the white vertex of the dimer is on the right. With respect to this

orientation of the chiral field the two zig-zag paths defining the link always arrive from the

bottom and go out from the top of the link in the dimer. This is because the zig-zag paths

always turn clockwise around white nodes and anticlockwise around black nodes (this is

a consistency rule for the Fast Inverse Algorithm [9]). If b is the weight of the zig-zag

path entering at bottom right and going out at top left, and b′ is the weight of the other

zig-zag path entering at bottom left and going out at top right, then the global charge of
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Figure 6: The charge of a link in the dimer in function of the weights b of the zig-zag paths.

the corresponding chiral field is always:

a = b − b′ (5.2)

This is a precise reformulation of the algorithm in [34] that can be extended without

ambiguities to all toric phases.

Note also that it is immediate to prove that rule (5.2) gives global non anomalous

charges. The sum of the charges of the chiral fields connected to a node in the dimer is

zero (invariance of the superpotential) since every zig-zag path appears twice in consecutive

links, but its weight b is once added and once subtracted. For the same reason the sum of

global charges of links for every face of the dimer is zero (anomaly cancellation).

To find the baryonic charges we have to impose the constraint (2.4):

0 =
∑

i

aiVi =
∑

i

bi+1Vi − biVi =
∑

i

bi(Vi−1 − Vi) (5.3)

and since the difference (Vi−1 − Vi) of consecutive vectors in the fan is proportional up to

a rotation of 90o to the vector vi of the (p,q) web, we find that the d− 3 baryonic charges

are those satisfying the constraints:

d
∑

i=1

bivi = 0 (5.4)

Note that equation (5.4) is identical to the conditions for having a first order deformation

in Altmann’s construction [31].

Anomaly free rank distributions in the gauge theory can therefore be built from as-

signments of weights b(v) to all vectors v in the (p,q) web satisfying equation (5.4).

Consider the case when the toric CY cone has a k − 1 dimensional branch of complex

structure deformations, that is the toric diagram P admits a Minkowski decomposition

into k polytopes P = P1 + · · ·Pk. Recall that the set of sides of P is the union of the set
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of sides of the summands Pj : equivalently the set of vectors v of the (p,q) web is split into

k disjoint subsets of vectors (let us call these sub-webs again Pj) at equilibrium, that is

for every sub-web Pj the sum of vectors is still zero. As explained in section 3, we expect

the existence of a fractional brane (rank distribution in field theory) dual to a supergravity

solution with a smoothed deformed cone. We propose the following conjecture for finding

such rank distribution:

Deformation Fractional Branes: The rank distribution in the quiver gauge theory

dual to the deformation of a toric CY cone with toric diagram P = P1 + · · ·Pk is com-

puted through a baryonic charge obtained assigning constant weights Mj to all the vectors

belonging to the same sub-web Pj : b(v) = Mj for v ∈ Pj , j = 1, . . . k.

Note in fact that since sub-webs are in equilibrium, equation (5.4) is trivially satisfied,

and the rank distribution will be anomaly free. This proposal nicely fits Altmann’s rule

of decomposition into a Minkowski sum. The rank distribution depends on k arbitrary

constants Mj , but indeed the parameter space of deformations is k − 1 dimensional: recall

that adding a common constant to all weights b in the (p,q) web does not change the

baryonic symmetry, so that fractional branes are indeed counted by the differences between

the constants Mj . Correspondingly in the gauge theory the rank distribution is defined up

the a common constant that can be added to all gauge groups (regular branes).

We have not a general proof of the above proposal, but we checked it in many concrete

examples. One important check that one can perform is that rank distributions computed

with the above proposal lead to a supersymmetric vacuum. In the case where a single

deformation parameter is turned on, it is easy to prove that with the proposed rank dis-

tributions no gauge group develops an ADS superpotential and therefore the vacuum is

expected to be supersymmetric, see the following section. A more refined check is to com-

pute the moduli space of the quiver gauge theory, probed by a single regular brane N = 1,

and show that it is the deformed cone. We will do this on a concrete example in section 8

along the lines of [33, 26], but after having introduced the useful tool of the Ψ-map.

We point out that in general there can be different rank distributions on the same

dimer configuration (also having fixed the toric phase), that are dual to the same deformed

geometry with the same deformation parameters. For instance consider the splitting of

the (p,q) web in only two sub-webs at equilibrium: the distance between their weights b

is an integer M , (number of fractional branes). By changing M in −M we find another

distribution of ranks for gauge groups, that could seem also very different from the previous

one. But in all the examples we considered we found that after applying some Seiberg

dualities it is possible to pass from one distribution to the other and hence they describe

the same deformed geometry (in fact analyzing the two cascades in the far IR with a single

regular brane one can see that they reduce to the same theory). We suggest that this is a

general feature.

Another possible ambiguity arises when the singularity is not isolated. In this case there

are parallel vectors in the (p,q) web perpendicular to the same edge of the toric diagram. If

the toric diagram has a Minkoswki decomposition, the assignments of this parallel vectors in
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Figure 7: The weights bi for N = 2 branes.

the (p,q) web to the different sub-webs may be ambiguous, and this gives rise to apparently

different rank distributions (look at figure 3 and at the two baryonic charges in figures 8 a)

and b)). However the Minkowski decomposition into polytopes is the same and we expect

a unique deformation; again we checked in the considered examples that these ambiguities

are resolved by Seiberg dualities: also in these cases the different rank distributions are

connected by Seiberg dualities. Therefore we conjecture that all baryonic symmetries with

weights constant on sub-webs in equilibrium compute rank distributions dual to deformed

geometries, but what matters are the absolute distances between the weights of the sub-

webs.

Let us now turn to the case of N = 2 fractional branes. Consider a toric diagram with

one edge E having k − 1 integer internal points (see figure 7 for the case k = 4). This

corresponds to a surface of singularities of C
2/Zk type. In the (p,q) web there are k vectors

w1, . . . wk perpendicular to the edge E. Our proposal is:

N = 2 fractional branes: The rank distributions in the quiver gauge theory cor-

responding to N = 2 fractional branes are computed by baryonic symmetries obtained

assigning weights b(wj) = bj , j = 1, . . . k for the k vectors wj perpendicular to E with the

constraint b1 + · · · bk = 0, and b(v) = 0 for all other vectors v in the (p,q) web.

Again recall that we can add a common constant to all bi of these configurations and

have still the same baryonic symmetry, and hence the same rank distribution. Note that

this choice obviously satisfies equations (5.4) for baryonic charges since we have imposed

that the sum of weights bj is zero. Moreover there is a space of k − 1 independent N = 2

fractional branes as expected for C
2/Zk singularities. Only parameters ai associated with

integer points along the edge E or with its vertices are different from zero. We will check

this assignment on concrete examples in the following subsection.

To conclude we suggest that different assignments of baryonic charges, not associated

with splittings of (p,q) web or with edges with integer points, correspond in general to SB

fractional branes.
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6. Examples and further observations

Let us start with the example of the SPP. It has d = 5 and hence has a two dimensional

space of fractional branes, but only a one dimensional space of complex deformations. It is

known in the literature that the rank distribution (N,N + M,N) for gauge groups (1,2,3)

reported in figure 2, corresponds to a deformation brane. In fact it is easy to see from

figures 1 and 2 that this corresponds to the choice of baryonic charges (a1, a2, a3, a4, a5) =

(−M,M,−M,M, 0) or equivalently (b1, b2, b3, b4, b5) =(M, 0,M, 0,M). These charges are

reported in figure 8 a), from which it is evident that the weights b for sub (p,q) webs in

equilibrium are constant. The gauge theory undergoes a cascade of Seiberg dualities that

reduce the number of regular branes N → N − M . In the IR, if there are no more regular

branes (that is M divides N) we can put N = 0 and so only a single confining SU(M)

gauge group survives (the second one). This is the case M > 0.

If instead M is negative, in the IR we have to put N = |M | and we get two SU(|M |)

gauge groups (groups 1 and 3, whereas groups 2 disappears) and a superpotential term

W0 = −X11X13X31. By performing a Seiberg duality5 with respect to face 3 (the square)

we come back to a single isolated gauge group.

There is another equivalent distribution of ranks corresponding to the deformation

brane: (b1, b2, b3, b4, b5) = (0,M, 0, 0,M); this is reported in figure 8 b): it corresponds again

to a subdivision into two subwebs in equilibrium. The rank distribution corresponding to

this baryonic symmetry is (N,N,N + M). Since the exchange of gauge groups 2 and 3 is

a symmetry of this theory (look the dimer from upside down) it is easy to see that this

gauge theory is equivalent to the previous one. Again M can be also negative.

Since SPP is not an isolated singularity, there is also an N = 2 fractional brane: it is

known that the associated rank distribution for the gauge groups is (N + M,N,N), and

this corresponds to the choice of baryonic charge (b1, b2, b3, b4, b5) = (0, 0, 0,M,−M), in

agreement with our proposal.

In figure 8 d) we report a choice of baryonic charges that gives the rank distribu-

tion: (N + M,N,N + 2M). For this type of fractional brane a supersymmetric vacuum

is not present: group 3 has Nf < Nc (with N=0) and generates a non perturbative ADS

superpotential leading to runaway behavior. The corresponding baryonic symmetry bi :

(0, 2M, 0,M,M) is not associated with a splitting of the (p,q) web in subwebs at equi-

librium. Note that this configuration can be obtained as a linear combination of the two

deformation branes in figure 8 a) and 8 b) up to a global constant for all bi: generic su-

perpositions of fractional deformation branes that do not satisfy the criterion in section 5

lead to SB. This fact was already noted in [25].

5Gauge group 3 has Nf = Nc = |M | in the IR, so that it is not possible to perform a Seiberg duality; yet

the moduli space of vacua is quantum modified: W = W0+X(detN−BB̄−Λ2M ), where X is a Lagrangian

multiplier, B, B̄ the baryons and N = X13X31 the meson matrix. Along the baryonic branch: X = 0,

B = iΛM ξ, B̄ = iΛM/ξ the gauge group condensates, and the superpotential becomes W = −X11N . These

massive fields can be integrated out in the IR. From a diagrammatic point of view this is formally equivalent

to perform a Seiberg duality. This is the same reason that allows to delete some gauge groups at the end

of the cascade when all regular branes disappear.
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Figure 8: The weights for baryonic charges in SPP theory. a) Deformation brane; rank distribution:

(N, N + M, N). b) Deformation brane; rank distribution: (N, N, N + M). c) N = 2 brane; rank

distribution (N + M, N, N). d) SB brane; rank distribution: (N + M, N, N + 2M).
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Figure 9: The rank distribution for a gauge theory dual to a toric geometry obtained by the

Minkowski sum of a triangle and another polygon. More generally if there is only one deformation

parameter the gauge groups can be only SU(N), SU(N + M) and SU(N − M).

Consider now the general case when the (p,q) web is splitted into two different sub-webs

P1 and P2 at equilibrium (if further splittings are allowed we turn on a single deformation

parameter). According to our proposal the deformational fractional brane is computed by

a baryonic symmetry with weights b of the type: b(v) = −M if v ∈ P1, b(v) = 0 if v ∈ P2.

Look at figure 9, where for simplicity P1 is a triangle.

To reconstruct the dimer we have to draw the zig-zag paths corresponding to vectors

of P1 and P2 as in [9], with the suitable consistency conditions. It is interesting to note

that in the complete dimer for P1 + P2, the zig-zag paths corresponding to P1 (or P2)
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satisfy separately the consistency conditions: for example in figure 9, if we isolate the three

zig-zag paths associated with vectors of P1 (lines in light green, dark green and blue) we

see that they divide the fundamental cell of the torus (delimited by the red dashed lines)

into three regions: a face (in magenta) where the zig-zag paths turn clockwise, another

face (in yellow) where the zig-zag paths turn anticlockwise, and a third face with an even

number of sides (where zig-zag paths are not oriented). This is just the way in which the

Fast Inverse Algorithm reconstructs the theory associated with the triangle P1, the N = 4

SYM: the non oriented face is the gauge group, clockwise oriented face is the white vertex,

and anticlockwise oriented face is the black vertex.

This is a general feature of dimers dual to a toric diagram that can be splitted in

P1 + P2 and has been recently noted also in [32], where it was explained in the context of

mirror symmetry and using ideas from geometric transition.6

For a generic polytope P1 we will call C (A) the regions along which zig-zag paths of

P1 turn clockwise (anticlockwise) and B the non-oriented regions. In general A, B, C are

unions of contractible regions in the torus T 2; a region of type A (or C) is rounded only

by region(s) of type B.

In figure 9 we have drawn only the zig-zag paths associated with P1; their intersections

correspond to links in the dimer that separate regions of type B and have baryonic charge

zero. But there are other links: we have drawn also all the links of the dimer along the

zig-zag paths of P1: they correspond to an intersection of a zig-zag paths of P1 with one of

P2. Note that inside the regions C (A) there are only white (black) vertices belonging to

the zig-zag paths of P1 because zig-zag paths turn clockwise (anticlockwise) around white

(black) nodes; there could be however “more interior” vertices of different colors inside C

and A, not belonging to the zig-zag paths of P1.

The links in the dimer correspond to intersections of two zig-zag paths: if the zig-zag

paths are associated with (p,q) web vectors of the same sub-web Pi, then the baryonic

charge of the link is zero because of equation (5.2), otherwise the charge is M or −M .

Therefore the only charged links under the baryonic symmetry are those separating regions

of type A from regions of type B and regions C from B. Let us assign number of colors N

to all faces in regions B; then using the rules and the conventions explained in section 5

and in figure 6 we can deduce that all faces in regions A will have number of colors N +M

and regions B number of colors N − M .

So our proposed baryonic symmetry gives rise only to gauge groups SU(N), SU(N+M)

or SU(N − M) (one of these could be absent as we will see). If we suppose the existence

of a cascade, in the IR (when M divides N), we can put N = M . At this step all regular

6Developing ideas from [24, 25], in the same paper [32] the sub-webs splitting at the level of dimers was

also used to show that it is possible to “deform” the theory for P1 + P2 to, say, the theory of P1. To obtain

this, one has to choose mesonic vevs to move the regular branes in the deformed space. In our paper instead

we do not give vevs to mesonic operators, but, analogously to the Klebanov-Strassler case, we consider the

cascades on the baryonic branches. Therefore in the IR, for deformation branes, when all regular branes

have disappeared, we typically find confining gauge groups with no matter left. To be clear we say also that

in this paper we consider cascades where only the number of regular branes is decreased: to have multiple

cascades as in [24] one has to turn on mesonic vevs.
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Figure 10: The rank distribution for deformation of dP3, corresponding to figure 4 a). The

shadowed gauge groups 1,3 and 5 are SU(N + M). The other groups, 2,4,and 6, are SU(N).

branes have disappeared and we have only gauge groups SU(M) in regions B and SU(2M)

in regions A. These gauge groups cannot develop ADS terms: since Nf and Nc are both

multiples of M the only problem would be an SU(2M) gauge group with M flavors. But

region A is rounded by region B and so an SU(2M) gauge group is rounded at least by

four faces (it is at least a square) with colors at least SU(M), therefore it has Nf ≥ 2M .

Obviously ADS terms cannot appear in previous steps of the cascade: if we add regular

branes (in multiples of M) then for every gauge group Nf increases faster than Nc.

Since no ADS term is generated we expect in these cases that supersymmetry is not

spontaneously broken. In concrete examples we found that, also when regular branes

have disappeared, it is possible to continue to perform some Seiberg duality (gauge group

condensation) until we are left with only isolated confining gauge groups.

If for example there are no faces in regions C (no SU(N − M) gauge groups) the

analysis is easier: in the IR we can put N=0, so that we are left only with SU(M) gauge

groups in regions A. Again there are no ADS superpotential terms (Nf = 0 or Nf ≥ M).

Note that superpotential terms due to vertices inside regions A typically allow to perform

gauge condensations until only confining groups and no massless chiral matter survives in

the IR.

We can check these ideas in the known case of dP3 [24, 25]. For the first deformation

branch in figure 4 a) we draw the rank distribution in figure 10, where we show the three

zig-zag paths corresponding to the edges of one of the triangles in the Minkowski sum

of the toric diagram. Note that in this case the region of type C contains only a white

vertex and no faces, so that there are only SU(N) gauge groups (faces 2,4,6 in regions B)

and SU(N + M) gauge groups (faces 1,3,5 in region A). In the IR we can put N = 0

and we have the three SU(M) gauge groups 1,3,5 with the corresponding superpotential

term. Performing a Seiberg duality (gauge group condensation on the baryonic branch)
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with respect to one of them and integrating out massive fields we have two confining gauge

groups in the IR.

Other cases with a single deformation parameter P = P1 + P2 that have only SU(N)

and SU(N + M) gauge groups are the cases where P1 is a segment: the (p,q) web of P1 is

a pair of opposite vectors, see figure 14 below.

We give a concrete example of the general case in figure 11: we consider a toric

diagram P obtained by summing the toric diagram of P1 ≡ C
3 (a triangle) and of P2 ≡

Y 2,1. We constructed a minimal toric phase, reported in figure 11, with the Fast Inverse

Algorithm [9]. There are 11 gauge groups labelled in red; the red dashed lines delimit the

fundamental cell. You can see that assigning weights bi: (0,−M, 0,−M, 0,−M, 0) to the

zig-zag paths we obtain the rank distribution for the fractional deformation brane reported

in figure 11 with SU(N + M) for faces 9,4 (type A regions); SU(N − M) for face 11 (type

C region), and SU(N) for the remaining gauge groups.

Note that since this is not an isolated singularity we have the ambiguity described it

the previous section: we can assign also weights bi: (−M, 0, 0,−M, 0,−M, 0) and obtain

an equivalent rank distribution with only SU(N −M) and SU(N) gauge groups. We report

the possible rank distributions for this theory in the following table:

(b1, b2, b3, b4, b5, b6, b7) 1 2 3 4 5 6 7 8 9 10 11

(0,−M, 0,−M, 0,−M, 0) N N N N + M N N N N N + M N N − M

(−M, 0, 0,−M, 0,−M, 0) N N N N N − M N − M N N − M N N − M N − M

(0, M, 0, M, 0, M, 0) N N N N − M N N N N N − M N N + M

(M, 0, 0, M, 0, M, 0) N N N N N + M N + M N N + M N N + M N + M

where we have added in the last two lines also the possibilities of exchanging M with −M ,

(in the following: M > 0).

The four distributions above may seem at first glance to be different; indeed we checked

for all of them the existence of a cascade of Seiberg dualities: the dimers come back to

themselves up to a permutation of groups with N → N −M . At the end of the respective

cascades we find (if M divides N) that gauge groups condensate until there remain always

three isolated confining gauge groups. If instead we consider the case with one regular

brane remaining in the IR (like in section 8) the four gauge theories reduce to the same

theory in the IR, so that they are dual to the same deformed geometry. More generally it

is possible to find Seiberg dualities that send each configuration in the previous table to

one another.

Deformations with more parameters are in general more difficult to treat. In figure 12

we report the rank distribution for the deformation of the cone over dP3 corresponding to

figure 4 b). This is a two parameters branch and correspondingly we have two integers, P

and M parametrizing the weights for the zig-zag paths: bi = (P,P +M,M,P, P +M,M,P ).

Note that our proposal for the baryonic charge of deformation branes reproduces the known

results in the literature, see figure 12 b).

In the IR, when all regular branes have disappeared (N = 0), there remain the four

gauge groups 1, 3, 4, 6 with ranks respectively P,M,P,M , see figure 13, and the tree level
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Figure 11: Dimer configuration dual to the toric diagram P = Y 2,1 + C3.

superpotential term:

W0 = −tr (X61X13X34X46) (6.1)

differently from the case with a single deformation parameter, we see that ADS superpo-

tential terms may appear. In our example, if P > M > 0, groups 1 and 4 have Nf < Nc

and so the superpotential becomes,

W = −tr (M63M36) + c

(

1

detM63

)
1

P−M

+ d

(

1

detM36

)
1

P−M

(6.2)

where M63 and M36 are the M ×M mesonic matrices of groups 1 and 4 respectively. It is

easy to see that F-term and D-term equations can be satisfied (choose the meson matrices

proportional to the identity). Therefore there exists a supersymmetric vacuum for this

theory.

Let us now make some further comments on the N = 2 fractional branes. In fig-

ures 14, 15 we compare the case of a fractional deformation brane obtained by lifting two

opposite vectors in the (p,q) web with the same weights (figure 14), and the case of an

N = 2 fractional brane obtained by giving opposite weights to two parallel vectors in

the (p,q) web (perpendicular to the same edge of the toric diagram), and weight zero to

all other vectors. In both cases the fundamental cell of the torus (delimited by the red

dashed lines in the figures) is divided in two strips where faces have ranks N and N + M

respectively. We have drawn only the white and black vertices belonging to the two zig

zag paths we are considering: for the deformation brane inside the strip with N +M ranks

there fall the white vertices: one would need an even number of links to pass from one

white vertex of the first zig-zag path to a white vertex of the second zig-zag path; among

these configurations there are also those consisting of only isolated groups. Instead for the

N = 2 fractional brane, inside the strip with N + M ranks there fall the white vertices of

the first zig-zag path and the black ones of the second zig-zag path: now an odd number
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Figure 12: The deformation of dP3 corresponding to figure 4b). a) Dimer configuration and

distribution of charges. b) Quiver and rank assignment. c) Toric Diagram. d) Values of ai and bi

for the baryonic charge corresponding to this rank distribution.

P

16
M P

M
4 3

Figure 13: The quiver gauge theory for dP3 in the IR with only fractional branes, corresponding

to figure 12 b).

of links is required to pass from one set of vertices to the other. Consider for example the

N = 2 fractional brane obtained with b1 = M and b2 = −M in figure 11, and zero to the
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Figure 14: Rank distribution for a fractional

deformation brane obtained by lifting a subweb

made up of two opposite vectors.

N
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Figure 15: Rank distribution for an N = 2

fractional brane obtained by giving opposite

weights to two (p,q) web vectors perpendicular

to the same edge of the toric diagram.

remaining bi. If we do not insert regular branes (N = 0), we have a closed loop of SU(M)

gauge groups connected by chiral fields (faces 6,5,4,8,9,10) but with no superpotential term.

If we give vev to all but one chiral fields the theory reduces to a single gauge group with

an adjoint multiplet.

The analysis just performed fits the observation already done in [25] that N = 2

fractional branes correspond to rank distributions where faces with N + M rank form

parallel strips on the torus: this is due to the fact that we give weights only to parallel

vectors in the (p,q) web, that correspond to parallel not intersecting zig-zag paths.

In figure 16 we give a more complicated example of an N = 2 fractional brane: the

theory is L2,3;3,2 whose dimer and toric diagram are reported in figure 16 a) and b) respec-

tively. We draw in the dimer only the three zig-zag paths that correspond to the vectors

perpendicular to the fourth edge of the toric diagram. You can check that giving weights

that sum up to zero only to these three vectors you obtain theories that have regions of the

moduli space with an accidental N = 2 supersymmetry. For instance if we give weights

(−M,−M, 2M) we obtain the rank distribution (N,N + M,N + M,N + 2M,N + 2M) for

the five gauge groups. If there are no regular branes N = 0, the quiver reduces to that

drawn in figure 16 c) with the superpotential:

W = X23X34X43X32 − X45X54X43X34 (6.3)

Giving vev to, for instance, X23 and X45 and integrating out massive fields the quiver

reduces to that reported in figure 16 d): there are two gauge groups with adjoints and an

hypermultiplet of N = 2. Also the superpotential (6.3) reduces to that of an N = 2 theory

with matter.

7. Comments on the Ψ-map

In this section we introduce the correspondence between the chiral ring of mesonic operators

in the (superconformal) field theory and the semigroup of integer points in C∗, the dual
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b) Toric diagram and weights for the baryonic symmetry. c) Quiver gauge theory (with N = 0). d)

Quiver after giving vevs to X23 and X45.

cone of the fan C. This correspondence has already been studied in the literature [21, 12],

see also [41]; here we simply translate these results in the language of charges and zig-zag

paths. Then we provide a direct proof in field theory that the Ψ-map of a mesonic operator

is an affine function, and make further useful comments.

The idea of the correspondence is simple: the moduli space of a superconformal quiver

gauge theory (we can restrict to the abelian case N = 1 with a single regular brane) is the

toric CY cone where the D3-brane can move in the string theory set up; this toric cone is

described by a convex rational polyhedral cone in R
3, the fan C. Mesonic operators (closed

oriented loops) in field theory can be considered as well defined functions on the toric cone:

the value of the function in every point of the moduli space is the vev of the mesonic

operator in that vacuum. Obviously such functions are the same for F-term equivalent

operators. In toric geometry the ring of algebraic functions on the toric cone is in one to

one correspondence with the semigroup of integer points in C∗, the dual cone of the fan C

(generated by inward pointing normals to the faces of C).

C∗ = {x ∈ R
3 | (x, y) ≥ 0 ∀y ∈ C} (7.1)

We may then expect a one to one correspondence between the chiral ring of mesonic

operators, equivalent up to F-terms, and the integer points in C∗. This is indeed the case,

and, as we will see, the three integer numbers that are associated to mesons are (related

to) the charges of the meson under the three global U(1) isometries of the geometry, that

are the flavor symmetries and the R-symmetry in field theory. A precise mapping can be

obtained using the Ψ-map, introduced in [21].
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Let us consider an oriented link X in the periodic quiver (or in the dimer). As ex-

plained in sections 2.1 and 5, one can parametrize the charges of the link X with a formal7

expression:

Ψ(X) =

d
∑

i=1

ciai (7.2)

where the coefficients ci are integer numbers (0 or 1 for a single link) that can be easily

computed using one of the two algorithms reviewed in section 2.1. The Ψ-map associates

to every oriented link X a function Ψ(X) defined on the vertices (and integer points on the

boundary) of the toric diagram P of the dual geometry. This function evaluated at vertex

i is defined as: Ψi(X) = ci. In the following we shall use the same expression Ψ(X) for

this function and for the expression in (7.2)8.

As in [21] we linearly extend the Ψ map to the group of one-chains L in the peri-

odic quiver, the free group generated by the oriented links Xj in the quiver with integer

coefficients:

L =
∑

j

djXj dj ∈ Z (7.3)

In particular the Ψ map of a path in the quiver is obtained by summing the trial charges

of fields in the path (or by subtracting the charges for links that are not oriented in the

same direction as the path).

Note that this definition is equivalent to that given in [21]: for a path L, Ψi(L) is the

number of intersections (weighted with +1 or -1 according to orientation) of L with the

perfect matching in the dimer corresponding to the i-th vertex of the toric diagram. This

intersection number is just the coefficient ci of ai in the expression of the Ψ-map for L:

Ψ(L) =
∑

i ciai, according to the algorithm in [15] for distributing charges.

Note that, for non isolated singularities, it is possible to extend the function Ψ(X) to all

the integer points along the boundary of the toric diagram (this can be done unambiguously

using the algorithm in [34] for distributing charges, in particular using the conventions

in (5.1) and (5.2)).

Let us fix a system of coordinates for the fan C, such that the generators have third

coordinate equal to one: the integer points along the boundary of the toric diagram are:

Vi = (xi, yi, 1), i = 1, . . . d. This defines the linear functions x and y in the plane of the

toric diagram. As already observed in [21, 12], the Ψ-map of a closed loop L in the periodic

quiver is an affine function:

Theorem. If L is a closed loop of chiral fields (oriented or not), then the Ψ-map for L

is:

Ψ(L) =

d
∑

i=1

(nxi + myi + c) ai (7.4)

7Here we are ignoring the restriction (2.3) and its analogue for R-symmetries.
8Formally we are substituting the symbols Di of the divisors associated with the i-th vertex [21] with

the parameters ai for charges. Therefore we do not make the quotient with respect to affine functions in

the plane of the toric diagram.
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where (n,m, c) are integer numbers and (n,m) are the homotopy numbers of the loop L on

the torus T 2 of the periodic quiver or dimer.

We give here a simple proof of this statement. From the definition (7.2) it is obvious that

the Ψ-map of any one cycle is a homogeneous degree-one polynomial in the d variables ai.

We may then restrict to the d − 1 global charges imposing the constraint (2.3) and prove

that for a closed loop: Ψ(L) =
∑d

i=1 (nxi + myi) ai. Then the general case can only differ

from this expression for an integer constant c times the sum of all ai. Now if (2.3) holds we

can parametrize the global charges as in section 5 using the parameters bi associated with

zig-zag paths and related to ai through (5.1). The charge of a generic link can be computed

as in (5.2): as shown in figure 6 we have to add the weight b if the topological intersection

between L and the zig-zag path is +1 or subtract the weight b if the intersection is −1.

Let us call w ≡ (n,m) the homotopy numbers of the loop L on the torus T 2; the homotopy

numbers of the zig-zag paths are given by the vectors vi of the (p,q) web, vi = (pi, qi). The

topological intersection between L and the i-th zig-zag path is det(w, vi), and summing

them with the weights bi we get the global charge of L:

Ψ(L) =

d
∑

i=1

det (w, vi) bi if

d
∑

i=1

ai = 0 (7.5)

Note that this is true also if the links in L are not all oriented in the same direction. If

Ṽi ≡ (xi, yi) are the coordinate vectors of the integer points along the perimeter of the

toric diagram, the vectors vi can be obtained by a 90o rotation of the edges of the toric

diagram:

vi = R
(

Ṽi − Ṽi−1

)

(7.6)

where R is the rotation matrix:

R =

(

0 1

−1 0

)

(7.7)

Indexes i will be understood to be periodic of period d and in our conventions are displaced

as in figure 5. Substituting (7.6) into (7.5) we compute:

Ψ(L) =
∑

i

det
(

w, RṼi bi − RṼi−1 bi

)

=
∑

i

det
(

w,RṼi (bi − bi+1)
)

= −
∑

i

det
(

w,RṼi

)

ai (7.8)

=
∑

i

(nxi + myi) ai if
d

∑

i=1

ai = 0 (7.9)

where in the third equality we have used the relation (5.1). This concludes the proof. Note

as a particular case that equality (7.8) together with (2.4) also shows that the baryonic

charge of a closed loop is zero, as claimed in section 4.
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Mesonic operators in field theory are the trace of chiral fields along an oriented closed

loop L. In the oriented case the coefficients di in (7.3) are all non negative, and hence the

coefficients ci in Ψ(L) =
∑

i ciai are all non negative. Because of theorem (1) the ci are

the scalar products:

ci = ((n,m, c), (xi, yi, 1)) , ci ≥ 0 for oriented loops. (7.10)

We see therefore that the vector (n,m, c) lies in C∗ for mesons. Hence the explicit mapping

from mesons to integer points in C∗ is just given by the Ψ-map (7.4): L ↔ (n,m, c).

Note that this correspondence is well defined under changes of coordinates: the co-

efficients ci of the Ψ-map (7.2) do not depend on the choices of coordinates, hence if we

perform a translation or an SL(2, Z) transformation of the toric diagram, the point (n,m, c)

transforms as a point of the dual lattice C∗ to keep the scalar product ci in (7.10) constant.

Since F-term equivalent mesons have the same charges they are mapped to the same

point (n,m, c). Conversely if mesons are mapped to the same point (n,m, c) it means that

they have the same homotopy numbers in the torus and the same “length” (i.e. the same

R-charge in the language of [21], this is obvious since the Ψ-map is just a parametrization of

the R-charge). Using Lemma 5.3.1 (that makes use of the hypotheses of consistency of the

tiling) in [21] we conclude that such mesons are F-term equivalent. Moreover we suppose

that the Ψ-map is surjective on C∗; the work of [21] also suggests that the correspondence

is one to one.

As a consequence mesons in the chiral ring and integer points of the additive semi-

group C∗ also satisfy the same algebraic relations: if two linear combinations with positive

integer coefficients of integer vectors in C∗ are equal, then the composition of the corre-

sponding mesons are still closed oriented loops with the same image under the Ψ-map,

since it is linear, and are therefore F -term equivalent. Recall that in toric geometry to

every independent generator of the semi-group C∗ is associated a complex variable zj and

that linear relations between generators become equations that express the toric cone as

a (non complete) intersection in the space of zj . Conversely in field theory the moduli

space (in the case with a single regular brane N = 1) can be computed through algebraic

and F-term relations between mesonic operators (for concrete examples see the following

section or the work of [33]). We have just seen through the Ψ-map that the two kinds of

computations always agree in the toric superconformal case: a consistent dimer configu-

ration built according to the rules of the Fast Inverse Algorithm [9] has a moduli space

of vacua that always reproduces the dual toric geometry. Therefore we point out that the

Ψ-map theory can work as an argument to show directly that the Fast Inverse Algorithm

is correct9. In fact the proofs of disposition of charges, of Theorem 1, and of Lemma 5.3.1

in [21] are based only on the assumption that the dimer is built according to the rules of

the Fast Inverse Algorithm: zig-zag paths must be closed non intersecting loops, they are

in one to one correspondence with the legs of the (p,q) web and must be drawn on a torus

with the homotopy numbers (p,q) of the corresponding leg; links in the dimer are in one

9For a beautiful justification of the Fast Inverse Algorithm in the context of mirror symmetry see [39].

A rigorous proof of the Fast Forward Algorithm based on perfect matchings can be found in [42].
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Figure 17: The toric diagram for the cone over PdP4 and its Minkowski decomposition.

to one correspondence with intersections of two zig-zag paths; zig-zag paths turn clockwise

around white vertices and anticlockwise around black vertices. . .

In the following section we shall see how the Ψ-map works on a concrete example;

moreover the Ψ-map greatly simplifies the problem of finding the mesons corresponding

to generators of C∗. Then we shall consider the deformed moduli space in presence of

fractional branes. To conclude we note that the vector (0, 0, 1) always belongs to C∗ since

the generators Vi are (xi, yi, 1). This vector will play an important role in the study of

deformations. In the superconformal case the mesons that are mapped to this vector are

the superpotential terms (recall that their R-charge is 2, and hence their Ψ map is
∑

i ai);

they are all F-term equivalent as it is easy to prove directly or using the fact that they are

mapped to the same vector under Ψ-map.

8. Computing the deformed geometry: a detailed example

Up to now we have checked in examples that our prescription in section 5 for fractional

deformation branes leads to a supersymmetric vacuum: in the IR if no regular branes

survive after the cascade we find isolated confining gauge groups. Indeed one should check

that also the deformed geometry is reproduced by the gauge theory. We will do that on a

specific example, along the lines of [33], by considering the case of a single regular D3 brane

in the IR, plus the fractional branes. The moduli space of the gauge theory, deformed by

the presence of ADS terms, describes the geometry probed by the D3 brane and therefore

should match with the geometry of the deformed cone that can be computed through

Altmann’s algorithm [31].

The example we have chosen is the PdP4 theory, whose toric diagram has vertices:

(0, 0, 1) (2, 0, 1) (2, 1, 1) (1, 2, 1) (0, 2, 1) (8.1)

and admits a Minkowski decomposition into a triangle and two segments, see figure 17,

corresponding to a two dimensional deformation branch.

The dimer can be easily reconstructed through the Fast Inverse Algorithm or by looking

in the literature: we report it in figure 18, where we draw also the zig-zag paths and their

correspondence with vectors in the (p,q) web. This is a minimal toric phase. There are 7

gauge groups labelled in red: we have chosen this labelling so as to reproduce the quiver

in figure 15 of [25]. The fundamental cell is delimited by the dashed black lines in the

dimer. From the zig-zag paths it is easy to reconstruct the charge distribution for links in

the dimer, as explained in sections 2.1 and 5; we draw it in figure 19.
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Figure 18: The dimer configuration for PdP4. We report on the right also the toric diagram for

PdP4 with the legs of the (p,q) web colored as the corresponding zig-zag paths in the dimer.
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Let’s start with the superconformal case. First of all we have to compute the cone C∗:

the inward pointing perpendiculars to the faces of (8.1) are:

z1 → (0, 1, 0) z2 → (−1, 0, 2) z3 → (−1,−1, 3) z4 → (0,−1, 2) z5 → (1, 0, 0) (8.2)

they are primitive integer vectors. These vectors generate C∗ over R
+, but do not generate

the lattice cone of integer points in C∗ over positive integer numbers. In our case we have

to add another generator:

t → (0, 0, 1) (8.3)

We assign complex variables z1, z2, z3, z4, z5, t to the six generators as in (8.2) and (8.3).

Linear relationships satisfied by the generating vectors (linear combination with pos-

itive integer coefficients equal to another combination with positive integer coefficients)

are translated into complex equations for the corresponding variables. A minimal set of

relations is in our case:

z1z3 = z2t z2z4 = z3t z3z5 = z4t

z2z5 = t2 z1z4 = t2
(8.4)

where for example the last equation translates the linear relation: (0, 1, 0) + (0,−1, 2)

= 2(0, 0, 1). The relations in (8.4) define the toric cone over PdP4 as a non complete

intersection in C
6. Note in fact that there are 6 variables and 5 relations, but the cone has

complex dimension 3: 2 relations depend on the others at generic points where zi and t

are not zero. In our example all generators lie on a plane (this is not true in general) and

so it is simpler to find the relations.

To see that the moduli space of gauge theory (with N = 1) reproduces the singular

geometry (8.4), we have to compute the F-term relations in the chiral ring of mesonic

operators.

To find mesons that correspond to the generating vectors of C∗, one can use the Ψ-map

theory and Theorem 1 in section 7. For example consider the first vector z1 → (0, 1, 0).

We know that a meson Z1 mapped to this vector by the Ψ-map has homotopy numbers

given by the first two entries (0, 1), and Ψ-map equal to the linear function y in the plane

of the toric diagram, that is Ψ(Z1) =
∑

i yiai = a3 + a6 + 2a4 + 2a5 (look at figure 18

for the disposition of ai in the plane of the toric diagram). So one can look for a path in

the dimer or in the periodic quiver (drawn in figure 20) with homotopy numbers (0, 1) of

minimal length (adding loops would add factors of
∑

i ai to the Ψ-map). For example you

can check that the meson Z1 = X46X67X72X24 has all these features and therefore it is

Ψ-mapped to (0, 1, 0), as one can check explicitly. Any other meson with the same Ψ-map

is F-term equivalent.

Continuing in this way, one can find the following representatives for mesons corre-
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Figure 20: The periodic quiver for PdP4. Red numbers label gauge groups, blue numbers label

charges ai.
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Figure 21: The vectors dj for the toric diagram PdP4.

sponding to generating vectors:

(n,m, c) nx + my + c Ψ − map meson

z1 (0, 1, 0) y a3 + 2a4 + 2a5 + a6 Z1 = X46X67X72X24

z2 (−1, 0, 2) −x + 2 a1 + a4 + 2a5 + 2a6 + 2a7 Z2 = X35X56X67X73

z3 (−1,−1, 3) −x − y + 3 2a1 + a2 + a5 + 2a6 + 3a7 Z3 = X45X56X67X73X34

z4 (0,−1, 2) 2 − y 2a1 + 2a2 + a3 + a6 + 2a7 Z4 = X45X57X73X34

z5 (1, 0, 0) x a1 + 2a2 + 2a3 + a4 Z5 = X57X72X25

t (0, 0, 1) 1 a1 + a2 + a3 + a4 + a5 + a6 + a7 T = X12X25X51

(8.5)

We understand the traces in writing mesons since when N = 1 the fields are complex
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numbers. The superpotential W0 can be read directly from the dimer:

W0 = X56X67X72X25 + X73X35X57 + X46X61X12X24 + X13X34X45X51

−X57X72X24X45 − X13X35X56X61 − X46X67X73X34 − X51X12X25 (8.6)

Using the F-term equations ∂W0/∂X one can show that the mesons in (8.5) satisfy the

same relations (8.4):

Z1Z3 = Z2T Z2Z4 = Z3T Z3Z5 = Z4T

Z2Z5 = T 2 Z1Z4 = T 2 (8.7)

In section 7 we gave arguments based on the Ψ-map to show that this matching is true in

general in the superconformal case.

Let us now consider the deformed case; we will start to compute the deformed geometry

corresponding to the Minkowski decomposition in figure 17.

8.1 The deformed geometry

We will follow Altmann’s work [31] (for a brief account of the algorithm see [33]). Note

however that we are extrapolating the algorithm to the case of a not isolated singularity.

We will label with dj , j = 1, . . . , 7, the vectors along the perimeter of the toric diagram

and with tj their weights, see figure 21:

d1 = d2 = (1, 0) d3 = (0, 1) d4 = (−1, 1) d5 = (−1, 0)

d6 = d7 = (0,−1)
(8.8)

A solution for the ti to the deformation conditions is:

t1 = t7 = t4 = t

t2 = t5 = t + S1

t3 = t6 = t + S2

(8.9)

corresponding to the Minkowski decomposition in figure 17. It will be easy to see that

equivalent parametrizations of the ti (obtained by exchanging t1 with t2 and t6 with t7)

will not give rise to ambiguities in the final equations.

Now the algorithm is the following: write every generating vector of C∗, with the

exception of (0, 0, 1), in the form (ci, η0(c
i)), with ci given by the first two components and

η0(c
i) the third component. Find a point a(ci) along the perimeter of the toric diagram

satisfying a(ci) · ci + η0(c
i) = 0. Then find a path representation for the point a(ci) = λi

jdj

and compute for every i the vector η(ci) = (−λi
1(d1 · c

i), . . . ,−λi
7(d7 · c

i)). We report the

results in the following table:

ci η0(c
i) a(ci) λi η(ci)

z1 (0, 1) 0 (0, 0) (0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0)

z2 (−1, 0) 2 (2, 0) (1, 1, 0, 0, 0, 0, 0) (1, 1, 0, 0, 0, 0, 0)

z3 (−1,−1) 3 (2, 1) (1, 1, 1, 0, 0, 0, 0) (1, 1, 1, 0, 0, 0, 0)

z4 (0,−1) 2 (1, 2) (1, 1, 1, 1, 0, 0, 0) (0, 0, 1, 1, 0, 0, 0)

z5 (1, 0) 0 (0, 2) (1, 1, 1, 1, 1, 0, 0) (−1,−1, 0, 1, 1, 0, 0)

(8.10)

– 33 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
0

2

7

6

4

5 5

5 5

1
3

1
3

2

6

2

2

4

7

P M+P

0

M+P

P

0

M+P

4 4

Figure 22: The rank distribution corresponding to b1 = b5 = P , b2 = b4 = b7 = M+P , b3 = b6 = 0.

The gauge groups are SU(N) for faces 1, 2, 5; SU(N + M) for faces 4, 7; SU(N + M + P ) for faces

6, 3.

Now every equation in (8.4) is replaced in the following way:

ta
∏

i

zpi

i =
∏

i

zqi

i →
∏

i

t
(

P

j qjη(cj )−pjη(cj))
i

i zpi

i =
∏

i

zqi

i (8.11)

and one can show that the degree is conserved: a =
∑

i

(

∑

j qjη(cj) − pjη(cj)
)

i
. Substi-

tuting the ti with the parametrization (8.9), we finally find the equations in the deformed

case:
z1z3 = z2(t + S2) z2z4 = z3t z3z5 = z4(t + S1)

z2z5 = t(t + S1) z1z4 = t(t + S2)
(8.12)

which still define a three dimensional complex geometry.

8.2 The moduli space of the gauge theory

First of all we have to compute the rank distribution in the gauge theory due to the

fractional branes using our proposal in section 5. As already said there are different ways to

do that, exchanging the weights b1 and b2 or b6 and b7, but they all lead to a supersymmetric

vacuum10.

In figure 22 for example we report the choice: (P,M + P, 0,M + P,P, 0,M + P ) for

the bi. Using the charge distribution in figure 19 it is easy to see that the ranks are:

(N,N,N + M + P,N + M,N,N + M + P,N + M). In the IR if N = 0 we have a

configuration equal to that of figure 13, and hence we expect a supersymmetric vacuum.

10For toric (pseudo) del Pezzos surfaces another method to find rank distributions for fractional deforma-

tion branes was used in [24, 25]: basically for simple toric diagrams with one internal point the number of

legs in the (p,q) web is equal to the number of gauge groups in the dual theory (double area), and one can

define a correspondence between them, and hence a rank distribution can be assigned fitting Altmann’s rule.

We have seen that for dP3 this method provides the same results than that proposed in section 5. Instead,

as already noted in [25], for PdP4 the algorithm in [24, 25] do not give the right fractional deformation

branes for all the correct choices of weights of (p,q) web legs. So for PdP4 we have to use the general

algorithm in section 5.
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Figure 23: The rank distribution corresponding to b3 = b6 = −P , b1 = b4 = b7 = −M , b2 = b5 = 0.

The gauge groups are SU(N) for faces 1, 4, 7, 5; SU(N + M) for face 2; SU(N + P ) for face 6;

SU(N + P − M) for face 3.

In figure 23 we draw the rank distribution for another possible choice of bi: (−M, 0,

−P,−M, 0,−P,−M) which leads to the ranks: (N,N + M,N + P −M,N,N , N + P,N).

We will consider the case P > M > 0. In the IR if N = 0 there survive only the three

isolated groups 2,3, and 6. Therefore this configuration is easier and we will study the

moduli space in this case.

We have to consider a single N = 1 regular brane. In the IR the non abelian gauge

groups are 2,3 and 6 with ranks SU(M +1), SU(P −M +1) and SU(P +1) and they all have

Nf < Nc, developing ADS superpotential terms. We replace the chiral fields connected to

these groups with the mesons A,B,C of gauge groups 2, 3, 6 respectively:

A =

(

A14 A15

A74 A75

)

≡

(

X12X24 X12X25

X72X24 X72X25

)

B =

(

B14 B15

B74 B75

)

≡

(

X13X34 X13X35

X73X34 X73X35

)

C =

(

C41 C47

C51 C57

)

≡

(

X46X61 X46X67

X56X61 X56X67

)

(8.13)

and the superpotential is:

W = A75C57 + B75X57 + C41A14 + B14X45X51

−A74X45X57 − C51B15 − B74C47 − A15X51

+α log(det A) + β log(detB) + γ log(det C) (8.14)

where we have rewritten W0 through mesons and have added the three ADS terms using

the glueballs α, β, γ that will be matched to the two deformation parameters S1 and S2,

similarly as in [33]. The mesons Zi and T can be rewritten as:

Z1 = C47A74 Z2 = B75C57 Z3 = X45C57B74

Z4 = X45X57B74 Z5 = X57A75 T = A15X51
(8.15)
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where again we do not write traces because, using mesons A,B,C, all fields are abelian.

We will check that the deformed equations (8.12) are satisfied, focusing on generic points

where all the mesons are different from zero. It is then easy to write the F-term equations

from (8.14) and invert them to express some fields in function of the others. For example

we found:

A14 =
A74(A74X45X57 − α)

A75X51
A15 =

A74X45X57

X51
B75 = A74X45

B74 =
A74X45X57 + β

C47
B15 =

A74C47

X51
B14 =

A74X57

X51

C51 =
X51(A74X45X57 + β)

A74C47
C57 =

A74X45X57 − α

A75
C41 =

A75X51

A74

(8.16)

and moreover F-term equations imply the relation:

γ = α + β (8.17)

so that indeed there are only two independent parameters.

Substituting into the explicit expressions for mesons (8.15) the results from F-term con-

ditions (8.16) and (8.17), it is easy to prove that the mesons Zi satisfy relations analogous

to (8.12):

Z1Z3 = Z2(T + β) Z2Z4 = Z3T Z3Z5 = Z4(T − α)

Z2Z5 = T (T − α) Z1Z4 = T (T + β)
(8.18)

so that the equations for the deformed geometry (8.12) are correctly reproduced also in

field theory, using the identifications:

α = −S1 β = S2 (8.19)

The same geometry has to be found using equivalent rank distributions, for instance

that reported in figure 22. We have studied the corresponding field theory in the simpler

case P = 0, that corresponds to a deformation with a single parameter S1 = S2 (the toric

diagram is split into the sum of a triangle and a square). With N = 1, we have four non

abelian SU(M + 1) gauge groups (faces 3, 4, 6, 7). By performing a Seiberg duality with

respect to groups 7 and 4 we are left with only two non-abelian gauge groups and one can

repeat easily the computation of the quantum modified moduli space. We have checked

again that the deformed geometry is correctly reproduced.

9. Conclusions

In this paper we have provided a simple method to compute anomaly free rank distribu-

tions in quiver gauge theories corresponding to fractional deformation branes or to N = 2

fractional branes. More generally we have suggested that an efficient qualitative under-

standing of the IR behavior of the gauge theory with fractional branes can be obtained by

looking at the weights bi associated with external legs in the (p,q) web.

Note however that according to our proposal, and as already noted in [25], deformation

branes and N = 2 fractional branes correspond to very special weights distributions for
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the legs of the (p,q) web and moreover they can appear only when the toric diagram

satisfies certain conditions. More general distributions should lead to what we have called

supersymmetry breaking behavior: for toric quiver gauge theories there have been found

only examples of runaway behavior [25 – 29], but it would be interesting to know whether

this is a general feature of this class of fractional branes or whether one can find cases with

a meta-stable vacuum.

When the toric singularity can be smoothed by a complex deformation, we have seen

that the gauge theory has a supersymmetric confining vacuum when no regular branes re-

main in the IR. We verified in a concrete example that the moduli space probed by a regular

brane, when we use our rule for finding rank distributions of deformation branes, repro-

duces the deformed geometry: deformation parameters correspond to gaugino condensates.

We also pointed out that the Ψ-map is a useful tool in performing these computations and

can explain in the general superconformal case why the moduli space of the gauge theory

built with the Fast Inverse Algorithm matches with the toric geometry description. But a

more general understanding of the deformed case is required.

Another important problem to be further investigated is the existence and the behavior

of cascades for the various classes of fractional branes. Many examples are known in the

literature [24, 23, 29]; at least for fractional deformation branes and SB branes there seems

to exist a cascade of Seiberg dualities that, after passing through a certain number of

possibly different phases of the gauge theory, sends the dimer back to itself but with a

decreased number of regular branes. However a general study of cascades requires a better

understanding of the (toric) phases of the quiver gauge theory.
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